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The large solvent signal from samples in H,O solvent still chal-
lenges the dynamic range capability of any spectrometer. The sol-
vent signal can be largely removed with a pair of simple resistor—
capacitor (RC) high-pass filters when the solvent frequency is set
at center band (zero frequency) using quadrature detection, with
RC ~ 0.5 ms. However, an ~0.5-ms transient remains at initial
time, which we reduce fourfold for a short time only, just before
the A/D converter, by means of a variable-gain amplifier, and
later restore with software. This modification can result in a nearly
fourfold increase in dynamic range. When we converted to a fre-
quency-shifted mode (A. G. Redfield and S. D. Kunz, 1994, J.
Magn. Reson. A 108, 234-237) we replaced the RC high-pass
filter with a quadrature feedback notch filter tuned to the solvent
frequency (5.06 kHz). This filter is an example of a class of two-
input/two-output filters which maintain the spectral integrity (im-
age-free character) of quadrature signals. Digital filters of the same
type are also considered briefly. We discuss the implications of
these ideas for spectrometer input design, including schemes for
elimination of radiation damping, and effects of probe bandwidth
on extreme oversampling. © 1998 Academic Press
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I. INTRODUCTION

In the context of NMR, dynamic range means the ability
of an NMR instrument to cope with large signals while not
adding extra noise above input thermal noise. Most often
such signals arise from the single large solvent H,O signal
in aqueous samples. The spectrometer must be able to deal
with such signals without requiring that the gain of the detec-
tor amplifier stages be set so low that the noise introduced
by the analog-to-digital converter (ADC), at the input to
the computer, contributes significantly to overall noise. Ap-
parently, this means that input noise that is amplified, fre-
guency-converted, and filtered must have an amplitude at
the input to the ADC that is somewhat greater than the input
voltage increment that makes the ADC digital output change
by one unit (1, 2). Since the H,O signal is typically more
than 2*° times the thermal noise, a 16-hit ADC does not
have the dynamic range required to handle it.
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The need for high dynamic range is diminished consider-
ably by the use of well-known methods for reducing the
solvent signal (3-5), including selective pulses (6), solvent
presaturation, and use of gradients and flip-back pulses with
isotope-labeled samples (7). Nevertheless, it is always use-
ful to improve the dynamic range of a spectrometer provided
that it can be done without increasing difficulty of operation,
if only for the purpose of increasing convenience and pro-
ductivity.

Here we discuss a method of increasing dynamic range
for most types of proton NMR, based on analog filtering,
which has not been described previously to our knowledge
except as a preliminary unevaluated proposal (8). We then
describe this method in the context of oversampling com-
bined with carrier shift, as described in a previous article
(1) which we refer to as RK1. Oversampling refers to the
use of an ADC sampling rate that is considerably greater
than the minimum rate needed to faithfully extract the spec-
trum from the free induction decay (FID), as commonly
expressed by the Nyquist criterion.

We are concerned only with improvements in dynamic
range that might be achieved by modification of the receiver
signal chain, ADC, and computer treatment. Therefore, we
discuss only changes in dynamic range in the form of
changes relative to typical current practice, namely use of a
500-MHz spectrometer with a 16-bit ADC set to observe a
10-kHz (20 ppm) spectral width. In this case 10,000 samples
per second are required, usually in the form of 5000 complex
quadrature pairs of samples per second. The dynamic range
would improve by a factor of 2 for each extra bit of ADC
precision if the ADC has no sources of error other than the
digitization round-off error resulting from representing the
input continuous voltage by an integer. We will evaluate
various strategies below as improvements in dynamic range
relative to this standard, in the form of aratio, or its base 2
logarithm stated as bits of increased A/D resolution that
would yield the same performance.

The ADC in any spectrometer is always preceded by an
analog antialiasing filter whose width is approximately equal
to half the sampling rate (or to the rate of quadrature pairs
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of samples per second). This filter takes the form of two
closely matched low-pass filters which cut off at half the
sampling rate, or 5 kHz for the example above. Since positive
and negative frequencies are distinguished by quadrature
detection, the effective width is twice the width of each filter,
or 10 kHz.

For those unfamiliar with oversampling, it can be easily
explained as follows: increasing the spectrometer output fil-
ter width to 40 kHz increases the noise power by 4, and its
root mean square amplitude by V4, allowing the receiver
gain to be decreased by 2 while maintaining the same noise
level at the ADC input and achieving greater dynamic range
by a factor of 2, or one bit equivalent of ADC resolution.
In order to avoid aiasing out-of-band noise into the spec-
trum, the sampling rate also must be increased by a factor
of 4, and, for the same frequency resolution, the number of
data points recorded in the computer memory must likewise
be quadrupled. Oversampling in this way can be performed
on any NMR spectrometer, but is not always done because
the increase in memory storage and computation time is a
nuisance, and the resulting increase in dynamic range is
modest. As the reasoning above indicates, the increase in
dynamic range is proportional to the square root of the in-
crease in spectral width and sampling rate (2). These prob-
lems can be aleviated by digita filtering and decimation-in-
time as described in RK 1. Such decimation could be usefully
performed on-line or off-line by most standard spectrome-
ters, but is much easier to perform using a digital signal
processor and associated memory as a buffer between the
ADC and the computer. These features are now increasingly
available in commercial instruments. Oversampling and dig-
ital filtering are widely believed to yield improved baselines,
a topic which we will not discuss. The filters described in
the present article have no effect on baseline roll.

The following section describes asimple instrument modi-
fication for increasing dynamic range for samples in H,O
for instruments that use the mode of data collection with the
H,0 signal at center band. In Section |1l we present a way
to achieve the same result when the center frequency is
shifted away from zero, as described in RK1, and Section
IV extends the previous ideas to digital filters. Some of these
sections are technical and might be skimmed by the genera
reader. Section V concludes with a brief discussion of vari-
ous architectural variants of the recently dominant type of
instrument.

Il. HIGH-PASS ANALOG FILTERING

An obvious way to reduce a strong solvent signal is to
remove it with an analog filter. In the usual mode of opera-
tion the water resonance is placed at zero frequency, and it
is then trivial to put a high-pass filter of the type shown in
Fig. 1 in series with each of the two antialiasing filters. We
use atime constant RC equal to 0.5 msresulting in reduction

REDFIELD AND KUNZ

INPUT ||

C R

OUTPUT

FIG. 1. High-passfilter. Two filterslike this are used, fed from conven-
tional antialiasing filters which have zero output impedance, and feeding
the separate ADC track/hold circuits which have infinite impedance. The
time constants RC of the two filters must be matched, but not as carefully
as for the antialiasing filters because mismatch will give quadrature images
only close to zero frequency. The filters are disabled by a manual switch
which shorts the capacitors.

of signals of 30% or more within 300 Hz of the water reso-
nance. The filter introduces phase and amplitude distortion
of the form

G = 1/(1 — i(wRC)™), [1]

where w is the angular frequency difference between the
water frequency and the resonance frequency and G is the
complex gain of the filter pair, which is zero at the water
frequency. This distortion could easily be computer cor-
rected to within afew hertz of the water frequency, as would
be desirable for experiments with *C-labeled proteins. Lines
within 300 Hz of water can still be usefully observed, but
with possible increased ADC noise as well as the phase shift
indicated by Eq. [1], and interference from shoulders of the
solvent resonance.

Such a modification does not by itself improve the dy-
namic range. As shown in Fig. 2, the first few points of the
FID digitization, within 0.5 ms of the start of the FID, are
gtill as large as the incoming signal, and overload of the
ADC still occurs at the same gain level.

In order to be able to increase the gain and dynamic range
using the filter we add another feature acting in cooperation
with the high-pass filter described in Fig. 1. We add a‘‘gain
changer’” circuit (8) that reduces the gain just before the
A/D for atime of the order of the time constant RC of the
filter (Fig. 1). To do this, we put a gain-programmable
instrumentation amplifier after all the filters, and just before
the A/D converter, to decrease the gain by a factor of 4 for
the first Ny paints of the FID. This amplifier’s gain is con-
trolled by the *“borrow’’ line of a preset counter, into which
the number N, is loaded from a hardware register before the
start of the FID. The register in turn is loaded with the
number Ny by the computer at the start of the run. This
counter then counts down once on each digitization strobe
and is inhibited by its own borrow line which also increases
the instrumentation amplifier's gain by 4. To compensate
for this gain change, the first incoming N, points are
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FIG. 2. (A) Typica input signal to one of the high-pass filters of Fig.
1, consisting of alarge zero-frequency signal from water, added to a small
high-frequency signal. The signal is zero for time less than zero, and only
the first part is shown. (B) The signal after it has passed through the filter.
The high-frequency signal is unchanged and the water signal is decreased
over most of the FID, but it is still just as large at the beginning of the free
induction decay.

multiplied by 4 in the computer before any processing of
digital filtering takes place. If digital filtering is performed
““on the fly’” in order to time-decimate the data, rather than
later, then this multiplication must be done on the fly aso,
before filtering and decimation. In our system the number
Ny is generally set at a default value as indicated above,
corresponding to the first 4 ms of digitization, or else it is
set to zero if the high-pass filter is not needed, for example,
in D,O solvent. This implementation is hardly noticed by
the user, since the spectrum appears similar with or without
it, except that the receiver gain can generally be increased
before overloading by about 4 (about 12 dB) compared to
when the filter/gain changer is disabled. It isalso noticeable,
when unintentionally implemented, if the spectrum has only
a small solvent signal and there are useful lines near the
solvent, since these are dephased and attenuated in our sys-
tem. Then the user has to realize that the filter/gain changer
and corresponding software must be disabled. This imple-
mentation obviously does not take care of large proton sig-
nals such as spin echoes and radiation-damping signals that
may arise more than 4 ms after the start of digitization. The
programmed gain change described here could usefully be
replaced by some sort of commercia or homemade auto-
matic ranging A/D converter to take care of such signals.
Baseline offset, and a basdline step when the gain is changed
due to imperfection in the instrumentation amplifier, is elimi-
nated by the 180° part of CY CLOPS phase cycling (9), or
by most phase cyclings used in multidimensiona NMR.
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Thefirst points of the FID are underdigitized in our imple-
mentation, increasing digital noise. The mean square digitiz-
ing noise for a 40-ms total digitizing time, of which the first
10% is digitized at 1/4 gain, is expected to be increased by
afactor of (0.1)(42) + 0.9 = 2.5, compared to digitization
noise with no gain change. The resulting increase in noise
amplitude is 252 = 1.6, giving an increase in dynamic
range of at least 4/1.6 = 2.5. The values we use, of gain
change amplitude (times 1/4) and time (4 ms), have not
been optimized.

I1l. ANALOG FILTERING WITH A FREQUENCY-
SHIFTED SIGNAL

In RK1 we described frequency shifting of the spectrome-
ter frequency by 5.06 kHz, just before the start of digitiza-
tion, mainly as a way to eliminate images and artifacts. In
this way, the nuisance solvent signal was shifted from zero
(center band) to 5.06 kHz. Obviously, the high-pass filter
of Fig. 1 cannot then be used to filter the solvent. Instead
we built an inherently quadrature filter circuit shown in Fig.
3. We know of no prior genera discussion of this type of
filter in the NMR or engineering literature. It is a‘‘ quadra-
ture’’ filter in the sense that any monochromatic quadrature
signal that isinput to A, and A results in a quadrature output
a B, and B;. Stated formally, if A, = Ajcos(wt) and A =
Agsin(wt), then the complex output B, + iB; = B is given
by B = G(w)(A + iA), where G(w) is the complex gain
of the filter which is time independent. These equations de-
fine the term ‘‘monochromatic quadrature signal’’ used
herein. The values of the input voltages A, and A; and the
output voltages B, and B; are al real.

The usual pair of independent antialiasing filters found on
all modern NMR machines form a quadrature filter if they
are exactly matched in gain and phase shift for all frequen-
cies. However, they always have the property that G(w) =
G(—w)*, where * denotes complex conjugate, so that G is
real for zero frequency. On the other hand because of the
feedback connections between channels, the filter of Fig. 3
does not have this property; G is nonreal for zero frequency,
afact which we need not discuss further but which the reader
can verify.

The first stage of the filter (amplifiers 1 and 2 in Fig. 3)
is a simple independent pair of low-pass antialiasing filters
of the type mentioned just above, with half-cutoff frequency
of 30 kHz, somewhat less than the complex digitization
rate. This rate is how variable in our system, to produce a
decimated spectral width compatible with data produced by
our commercia instrument, but it is in the range of 40—60
kHz. A sharp-cutoff filter is not needed here because the
NMR spectral range is small compared to 30 kHz for the
samples we studied. The complex gain of amplifiers 1 and
2, defined as G, = (C, + IC)/(A + iA), is

Ga= —1/(1 + iwRCy). [2]
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FIG. 3. Antidiasing and notch filter used for frequency-shifted operation. The dotted line delineates the section of the filter referred to in the text
as the narrowband quadrature amplifier. Operational amplifiers are all Analog Devices OP27, and their grounded positive inputs are not shown. All
resistors labeled R are 3.5 k2, and C,, C,, and R; are .032 uf, 1360 pf, and 47 k€2, respectively. The damping resistors R, are omitted except for testing
of the narrowband quadrature filter, when they are in the range of several hundred k2. The resistors Ry are adjustable from 15 to 16 k2 to give equal
gain for each channel far from the notch frequency, and resistors R, are adjustable between 1 and 2 k2, to determine the notch frequency. Not shown
are 20-pf stabilizing capacitors across resistors Ry, and two low-pass RC input filters in series with each channel having time constants of 5 and 0.5 us.
Also not shown are relays which connect small (100 ) resistors across capacitors C,, to disable the notch filtering when it is not needed.

The overal gain is G,G,,, where G, is the gain of the second
state of the filter.

We will show that the second state of the filter in Fig. 3
is a notch filter which removes the positive frequency w, =
(RC,) ™! and not the negative frequency w,. This filter
would permit the spectrometer to observe lines undistorted at
—wq While filtering out the solvent at +w;; more important,
it permits construction of the very simple filter of Fig. 3 to
act as an arbitrarily narrow non-zero-frequency notch filter,
for extension of the scheme described in Section Il to non-
zero solvent frequency. The output stage of thefilter consists
of the operational amplifiers 3 and 4, which are smple low-
gain inverting amplifiers having gain — R,/R, together with
the complex feedback amplifier consisting of operationa
amplifiers 5, 6, 7, and 8 which is the block surrounded by
the dotted line. Defining the gain of the latter block as G
= (D, + iD;)/(B; + iB;), or G; = D/B, the overal notch
filter gain is given by the usual feedback expressions for
input gain — Ry/R and feedback gain —G¢Ry/R:

B = —(Ry/R)(C + BG;y). [3]
Here we have implicitly assumed, from the notation used,
that the filter inside the dotted line of Fig. 3 is a quadrature
filter in the technical sense defined above; we will show this
shortly. From Eq. [3], the gain of the entire second stage
is

G, =B/C = —[(R/IRy) + G{] . [4]

The feedback element, amplifiers 5 and 6 and the ssmple
inverters 7 and 8, can be viewed as an analog computer
which simulates adamped driven simple harmonic oscillator.
It also simulates the transverse terms of the Bloch equations
below saturation, or the Liouville equation for a density
matrix coherence element in the limit of weak excitation.
One of us constructed a filter of this type years ago, using
vacuum-tube operational amplifiers, as a demonstration of
the Bloch equations. We refer to it as a narrowband quadra-
ture filter. Virtually the same filter, with only a single input,
is described in detail by Lancaster (10), together with an
interesting display of ‘‘quadrature art’’ obtained from it, and
is called a biquad filter.

In quadrature notation we assume as usua an input to the
block B = (B, + iB;) = Bye™“' and that the output D = (D,
+ iD;) is aso monochromatic and quadrature, and of the
formD = (D, + iD;) = G;B, where G; is the complex gain,
and B,, B;, D, and D; are ordinary real signals. The behavior
of the circuit is obtained by equating the current flowing
into the inputs of amplifiers 5 and 6 to zero:

—C,dD/dt — D(Rz* — iR;%) + B/R; = 0.  [5]

The reader can verify that the real and imaginary parts of
this equation give the correct input current-null equations
for amplifiers 5 and 6 separately. The gain G; is found
immediately from the fact that dD/dt = iwD which follows
from the definition of the quadrature signal D. It is
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Gt = D/B = (Ri/R¢)/{1 + IRCy(w — wi)}, [6]
where the frequency w, equas (R,C;) *. This is a nar-
rowband filter with peak gain at the (real) frequency w.
Stimulated by a short pulse at its input, its response would
be of the form e'“1'e ™, where d = (RyC,) *. It corresponds
to afilter of Q = Ry/R; and it has no resonant response at
negative frequency, unlike conventional pairs of separate
narrowband filters.

In practice the damping resistor Ry is omitted in the final
notch filter (Fig. 3). It is useful to include Ry for testing the
behavior of the narrowband quadrature filter alone when its
inputs are disconnected from the outputs of amplifiers 3 and
4. If Ry > Ry, then the outputs D show a nearly circular
pattern on an oscilloscope x—y (real—imaginary) display
even if theinput is pure real (B, = Bycos(wt) and B, = 0),
when w = w,. If Ry is removed, the narrowband filter has
infinite gain at w = w, and tends to oscillate by itself. An
oscillator of this type was published decades ago in the
classic applications manual published by the G.A. Philbrick
Co., originators of the operational amplifier. It is stabilized
against oscillation when connected in the feedback |oop with
amplifier pair 3 and 4.

The overal gain of the notch filter (amplifiers 3-8, con-
nected as in Fig. 3), for Ry infinite, is, from Egs. [4] and
(6],

G = —(R/R)/{1 + IR[RRCy(w — wi)] *}. [7]
Thegainiszero when w = w;, and is decreased in magnitude
by 0.707, relative to its gain far from the notch frequency
wy, When |w — w;| = Ry (RRC;) ™.

This filter has properties strongly analogous to those of
the simple RC filter of Fig. 1, Eq. [1], except that w is
replaced by w — w; and RC is replaced by RiRC,/Ry. The
latter quantity is equal to 0.5 ms for our filter. Just as for
the earlier circuit, the filter removes the solvent signal only
for time long compared to 0.5 ms. To achieve high dynamic
range we use the gain-changer in conjunction with it, exactly
as in Section |1, with the gain-programmable amplifier after
the filter of Fig. 3. The discussion of dynamic range in
Section |1 applies equally in this case.

This circuit has never oscillated in 2 years of use, and it
filters as expected. The circuit as originaly built filtered at
16 kHz and we intended to try to use even higher frequen-
cies, but the final choice of 5.06 kHz was forced on us for
reasons described in RK1. At higher filtering frequencies,
wideband operational amplifiers might be required to get the
results predicted above. The circuit was originally built using
such operational amplifiers, but it then showed parasitic os-
cillation. High-frequency construction technique (i.e, a
good ground plane with compact feedback and good by-
passing) is needed, and we do not know what the practical
frequency limit of construction of this type of filter is.
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The circuit of Fig. 3 can be simplified to form a versatile
notch filter of a single nonquadrature signal for use with
spectrometers which do not use quadrature detection. More
than one circuit of this type could be used in series to filter
out buffer signals from strong signals other than solvent.
The circuit could be made to have programmable width and
frequency, by incorporation of resistor arrays of the type
used in digital-to-analog converters.

IV. EXTENSION TO DIGITAL FILTERS

Any analog filter can be approximated by a digital filter.
Our treatment of digita filtering will look similar to a con-
ventional treatment (11) with two exceptions: first, the coef-
ficients connecting the input and output arrays are complex
numbers, second, the inputs and outputs are complex num-
bers as usual, but these complex numbers are not to be
interpreted as representing real numbers by their real part,
as is common in electrical engineering notation, but instead
they are arrays of pairs of numbers, one for the real part and
the other for the imaginary part of the complex number. In
the case of quadrature data, these numbers could be input
directly from the two quadrature inputs. If quadrature detec-
tion is not used, the single-channel input data would become
the real input to be the complex filter, and the imaginary
input to be the digital filter would to be set to zero. In that
case the input would be an equal sum of positive and nega-
tive frequencies but the complex digital filter output (espe-
cidly for the narrowband filter emulated below) might be
nearly pure positive frequency (or negative freguency)
aone.

We consider first a narrowband feedback filter analog
(known in the literature as an infinite impul se response filter,
or IIR filter) of the simplest form. The kth complex output
number of the filter D is related to the input number B,,
and the previous output number D,_;, by

Dk = Dk,lei“’f + Bk, [8]
where w; is a rea number which will turn out to be the
resonance frequency of thefilter,  is the time between input
samples, and w, is the desired peak gain frequency. We
will discuss only the steady-state response of this filter to a
sampled pure sinusoidal quadrature input B, = Be'*", where
B iscomplex and w isrea. These B,’'s could be inputs from
apair of ADCs sampling quadrature wave forms of the type
defined in Section I11.

The reader does not have to have prior knowledge of
traditional digital filtering terminology to comprehend what
follows. We define Z = €'“7, and can then write B, = BZ*.
A reasonabletrial solution for the output of the filter, assum-
ing that it is stable, is that it is aso periodic with the same
frequency: D, = BG;e“* = BG;Z*, where the gain G;, like
B, is a complex number, dependent on w but not k, and is
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the gain of the filter. These inputs and trial outputs inserted
into Eq. [8] yield, after canceling a factor Z* on each side,

BG; = BG,Z e + B. [9]

The gain is then

Gr=(1-2z""r)" = (i(w-w)r)™ [10]
where in the second equality we expanded Z in a Taylor
series 1 + iwT +- - -and kept only the lowest order terms,
as is appropriate if the input frequency w is small compared
to the sampling rate ~ ~*, and similarly for the other exponen-
tial. The second form of Eq. [10] is similar in form to the
response of the narrowband quadrature filter in Section Il1
(Eq. [6], with Ry equal to infinity).

The reader can verify that the filter defined by Eq. [8] can
beincorporated into a second filter with negative feedback to
yield a notch filter, as in the analog filter of Fig. 3, by
defining new inputs C, and using the B, as outputs, processed
as

B« = C« — dDx, [11]
where D, is given by Eq. [8]. Equation [11] is analogous
to Eg. [3], and the overall gain for wr < 1 is similar to
that of Eq. [4] above, if g/7 = Ry/RRC;. The parameter g
must be real and positive, and would be small compared to
one, for a narrow notch. A notch filter of this type might be
used in conjunction with narrowband digital filters to get a
sharp-cutoff filter.

In the language of digital filtering, this notch filter has
a zero on the unit-Z circle at Z = e'“1", and a nearby pole
aZ=e“ (1-g)*’ Itissmilar to a standard notch
filter (11) that also has a zero and pole at e 1" and
e*iUJlT (1 _ g)fl_

By cascading severa such narrow passband filters, or sm-
ilar feedback filters with more terms connecting B, with
By 1, B« o, €tc., with damping added, a narrowband filter
of many poles could be constructed. Apparently six real
multiplications per pole are needed, and a five-polefilter can
probably be calculated on the fly on the input data for a fast
digital signal processor operating at = = 2 us (1-MHz digital
quadrature bandwidth).

Use of such a narrowband filter with decimation provides
a possible alternative to the current practice of a frequency
shift of the data followed by filtering at zero frequency. For
example, input data and noise within a 1-MHz bandwidth,
with the spectrum occupying somewhat less than 100 kHz,
centered at n times 100 kHz, where n is an integer, could
be filtered using such a filter having a passband centered at
n[1100 kHz and width less than 100 kHz. Following time
decimation by 10, the signal would be aliased to the nominal
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range —50 to +50 kHz, requiring storage of 0.4 MB per
second of FID sampled, without requiring an explicit fre-
guency-shift calculation. These numbers are appropriate for
spectra occupying 200 ppm at 500 MHz. Other specia
ranges and decimations would be useful for other types of
spectra, and filtering could also be done at the end of acquisi-
tion of several FIDs as described in RK1, and/or in two
stages, or with several resolutions from the same data.

We have not used digital filters of these types in our
spectrometer. Our treatment of them is included because it
may be unfamiliar, and is analogous to the hardware filters
described above.

V. DISCUSSION

We conclude with abrief discussion of the design parame-
ters for the input stage of an NMR instrument, as they relate
to the issues mentioned above.

An important variable in the operation of an NMR instru-
ment is the center frequency of the NMR signal presented
to the ADCs, which is zero for the usual recent practice,
and was 5.06 kHz in the modification of RK1. A frequency
in the range of 50 to 100 kHz is reasonable, since it would
be high enough to move the entire NMR spectrum to one
side of zero for amost any case, and low enough so that
filtering circuits like that of Fig. 3 can probably be made.
Frequency-shifted operation (1) is still not standard, and
instead users of commercia instruments achieve acceptable
results using CY CLOPS (9) for one-dimensional NMR, or
hardware (8) or software adjustment of the quadrature detec-
tor for multidimensional NMR. In fact, frequency shifting
can be made nearly invisible to the user, but it is most
efficiently performed using a single digital signal processor
to process both quadrature outputs, especially as described
above.

Direct conversion of the intermediate frequency at several
megahertz is now feasible (below) and can eliminate quadra-
ture detection, but construction of a versatile narrowband
analog filter in the megahertz range may be difficult. While
it is attractive to simplify the spectrometer in this way, and
the need for frequency shifting of the FID is eliminated, the
quadrature detection which is eliminated is ssimple and well
understood, and removing it decreases flexibility. It istrivial
to build a quadrature detector with very wide bandwidth, to
achieve good dynamic range. All of the above remarks apply
equally to the use of anti-image narrowband filtering at inter-
mediate frequency followed by nonquadrature conversion to
low frequency (12). Therefore, a quadrature detector re-
mains a desirable feature of a modern spectrometer.

Two groups have proposed use of feedback circuitry to
eliminate radiation damping effects, and such capability
seems very desirable for any spectrometer (13, 14). These
methods were demonstrated for spectrometers operating with
the water frequency at zero frequency, but it should be possi-
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ble to use similar feedback when the solvent frequency is
shifted. Broekaert and Jeener (14) discuss the feedback-
stability requirements of their method in detail, and use apair
of single-pole (RC) filters as the single dominant element
limiting the feedback bandwidth, as is often done with any
high-gain feedback. At finite solvent frequency, whether in
the range of a few kilohertz or higher, their simple pair of
RC filters would be replaced with a narrowband quadrature
filter similar to the block inside the dotted line of Fig. 3.
This filter would have to be the only narrowband element
in the radiation-damping feedback loop. It would have to be
switched in during the free induction decay, and otherwise
the RC filters described (14) would be used for the radiation-
damping elimination. A notch filter (Section I11) would still
be usable to increase dynamic range, but placed after the
radiation-damping feedback loop, just before the ADC.
Digital signal processors (DSPs) are primarily devices
that save money by providing buffer storage and high-speed
parallel processing, permitting use of inexpensive slow main
computers, and they should be used on al NMR systems,
no matter how humble. By use of two ADCs with atop-line
DSP, an input sampling rate of 10° per second, or 1-MHz
bandwidth, is probably easy, with 16-bit accuracy. Digita
downconverters (DDCs) perform frequency downconver-
sion, digital filtering, and time decimation, at input sample
rates exceeding 10 MHz (15). They normally would be in
front of a DSP and two would be needed for quadrature
detection, while one would be needed for direct detection at
the intermediate frequency as mentioned above. Unfortu-
nately, ADCs that can sample at this rate are not as precise
as the lower speed ADCs and their use would not improve
dynamic range much, at this writing (2). Use of these high
sampling rates may be more attractive in the future, or justi-
fied on the ground that their potentia utility justifies the
relatively low cost of implementing them. It seems prudent
for the instrument designer to plan for future upgrade to this
technology, using two DDCs and whatever ADCs may be
available. At the same time, it is possible that a 1-MHz
bandwidth with analog filtering as described here, giving a
factor of over 30 in dynamic range compared to the typical
conditions described in the Introduction, will satisfy the de-
sires of the NMR spectroscopist for high dynamic range.
So far we have assumed that increasing the filter band-
width with oversampling as in RK1 will increase the noise
at the ADC and increase dynamic range. In fact the analog
bandwidth of modern NMR systems is limited by the reso-
nance width of the NMR probe to less than 1 MHz, espe-
cialy for superconducting probes which are now available.
The noise outside this bandwidth, and perhaps within it, can
be supplemented by introduction of artificial noise carefully
filtered so that it does not appear in the NMR spectrum
(16, 17). This is known to engineers as ‘‘out-of-band
dither’” (see, for example, 18). Since out-of-band dithering
does not rely on the noise from the spectrometer input, it
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seems conceivable that the gain of the receiver system and
the level of dithering can be adjusted separately to further
optimize dynamic range. This is a topic worthy of future
investigation.

We conclude by noting that Sections |1l and IV of the
present article are largely concerned with a point of view,
namely exploitation of the representation of real pairs of
signals, carrying harmonic data, as complex numbers, which
has been used in the NMR literature since the first quadrature
detectors were developed (19) . On the other hand, although
quadrature detectors are now commonly described in elec-
tronic engineering texts as used in ** pulse code modulation’’
(90° phase shifting of an RF carrier to represent a binary
signal), one seldom finds mention in these texts of the out-
puts of a quadrature detector as being real and imaginary
parts of a complex signal. A possible reason for this neglect
of a simplifying representation, other than tradition and fear
of possible confusion with the dominant prior use of complex
numbers to represent single real signals, is that quadrature
signals as used here are unstable against small imperfections
in hardware which will introduce image frequencies. This
is, of course, not a problem for a quadrature digital filter
(Section IV above).

The circuit of Fig. 3 viewed as a single-channel amplifier
can be correctly described merely as a ‘*biquad’’ filter (9)
used as the feedback element of a negative feedback ampli-
fier. What is gained by quadrature notation? The circuit of
Fig. 3 is simpler than any pair of notch filters, it is single-
sideband, and it is probably superior in performance to any
aternative. Quadrature notation, like imaginary numbers no-
tation, is not strictly necessary, but provides insight and
convenience.
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